
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 9, Sep. 2021 3258
Copyright ⓒ 2021 KSII

http://doi.org/10.3837/tiis.2021.09.010 ISSN : 1976-7277

Malware Detection with Directed Cyclic
Graph and Weight Merging

Shanxi Li1, Qingguo Zhou1* and Wei Wei2*

1 School of Information Science and Engineering, Lanzhou University
Lanzhou 730000 - China
[e-mail: lisx@lzu.edu.cn]

2 School of Computer Science and Engineering, Xi'an University of Technology
Xi'an 710048 - China

[e-mail: weiwei@xaut.edu.cn]
*Corresponding author: Qingguo Zhou and Wei Wei

Received August 18, 2020; revised March 30, 2021; accepted June 14, 2021;

published September 30, 2021

Abstract

Malware is a severe threat to the computing system and there’s a long history of the battle
between malware detection and anti-detection. Most traditional detection methods are based
on static analysis with signature matching and dynamic analysis methods that are focused on
sensitive behaviors. However, the usual detections have only limited effect when meeting the
development of malware, so that the manual update for feature sets is essential. Besides, most
of these methods match target samples with the usual feature database, which ignored the
characteristics of the sample itself. In this paper, we propose a new malware detection method
that could combine the features of a single sample and the general features of malware. Firstly,
a structure of Directed Cyclic Graph (DCG) is adopted to extract features from samples. Then
the sensitivity of each API call is computed with Markov Chain. Afterward, the graph is
merged with the chain to get the final features. Finally, the detectors based on machine
learning or deep learning are devised for identification. To evaluate the effect and robustness
of our approach, several experiments were adopted. The results showed that the proposed
method had a good performance in most tests, and the approach also had stability with the
development and growth of malware.

Keywords: malware detection, directed cyclic graph, Markov Chain, machine learning,
neural network

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 9, September 2021 3259

1. Introduction

The concepts of malware could include all binary files that would injure the computing
system intentionally. In recent years, malware have more diversities in techniques and
destination. Nowadays, many malware adopt the way that mix with multiple attack methods to
reach the target, and most of them take obfuscation or encryption method to disguise
themselves and avoid detection.

Contract to the development of malware techniques, most of the defense systems still use
static analysis as their primary measurement, which is mainly based on signature matching [1].
Some defense systems have developed dynamic analysis, including sensitive behaviors,
access to critical privileges, network analysis, and key process monitor as their assistant
method [2], [3]. However, all of these methods are mainly focused on specific malware or
malware classes so that they are limited when meeting new types or variants of malware.
Besides, they are also weak to the anti-detection techniques, which would let the detectors be
deceived by disguised malware and cause damage. All of the situations indicate that
developing a new method of detection is essential.

In recent years, some researchers have focused on the dynamic detection of malware based
on Application Programming Interface (API) call sequences, and have proved their effects [4],
[5], [6]. API is a set of instructions used to program software applications. All programs can
interact with the Windows API and access pre-defined functions by invoking API calls to
make use of facilities provided involving base services to access resources such as system files,
processes, threads, devices, and advanced services [7]. The API calls of malware reflect its
high-level functionality and can be used to understand its overall behavior. API call sequence
analysis is, therefore, an effective method of malware analysis [8].

In this work, we propose a novel approach for feature extraction and detection. The
approach extract features from the specific sample and combines the feature with the general
characteristics of malware. Besides, we adopt Principal Components Analysis (PCA) for
reducing dimensions and consumption of resources. Moreover, some models based on
machine or deep learning are devised as detectors to identify the features. The main
contributions of our work are listed as follows:
• We propose a novel method for feature extraction from samples with a solid structure.

The structure is based on the invoke relationship between API and could maintain most
information on the API call sequences.

• To get general features of malware, we design a new weighting model based on Markov
Chain, the model can be trained with numerous known malware to decide the weight of
each invokes caused in malware. Then the features extracted from a specific sample will
be combined with general features of whole malware so that the newly generated
features can maintain the characteristics of the sample itself while increasing the
generality of the features to defend the disguises and variants of malware.

• We adopt PCA to reduce consumption and improve the performance of the approach.
Afterward, we use several models based on machine learning and devise a few other
models based on neural networks for detection. The purpose of using various models is
to prove the universality of our approach and compare the performance among different
models.

3260 Li et al.: Malware Detection with Directed Cyclic Graph and Weight Merging

• We evaluate the proposed method with a series of experiments and diverse datasets. The
results present that our approaches are effective with most detectors and have robustness
when meeting the development. However, some problems are also found in the
experiments, which need further study.

The remainder of the paper is organized as follows. Some related works are reviewed in
Section 2. Our method of feature extraction and detection are presented in Section 3 and 4. The
details of experiments and results are shown in Section 5, and the whole work is concluded in
Section 6.

2. Related Work
In recent years, static detections of malware have faced severe challenges from the
anti-detection technique evolved subsequently, especially encryption and disguise. Therefore,
more researchers have concentrated on dynamic detection techniques. One most efficient of
them is API call sequences analysis.

Generally, the researches about API-based malware detection are mainly focused on the
method of feature extraction such as n-grams, features, and flow graphs, and some researchers
combined two of the above of the analysis to propose new approaches. Most of them got good
results. Naval et al. [9] proposed a new strategy adopted both graphs and n-grams to generate a
unique model called Ordered System-Call Graph (OSCG). Then the graph was transformed
into a Feature Vector Table (FVT) using semantically relevant path extraction and was
processed with an ensemble-based algorithm. The results showed the accuracy of detection
could get up to 95%.

Detections based on Markov chains have also been adopted and developed by some
researchers. Onwuzurike et al. [10] proposed a new method named MaMaDroid based on
static analysis of API and Markov chains of the call graph to detect malicious Android apps.
Ficco [11] improved the approach by exploiting dynamic analysis system calls instead of static.
The developed approach was applied in IoT malware detection and get an F-measure up to
89%.

With the development of deep learning, some researchers also attempted to apply the
technique of neural networks to malware identification. For example, Ganesh et al. [12]
extracted features from APK samples and created a 12x12 vector image, then the image was
detected by CNN models. The results showed an accuracy of 93%. However, detection
approaches based on deep learning methods also are confronted with risks, specifically attack
to deep learning models. Chen et al. [13] proposed an adversarial way to attack deep learning
detectors based on Jacobian-based Saliency Map Attack (JSMA) and optimal perturbations
onto Android APK. Then the approach was evaluated with MaMaDroid and Derbin. The
results showed that the attacking method could attack of MaMaDroid and Derbin effectively.
The research verified the seriousness of adversarial attacks towards the detection methods
based on deep learning, which should be valued in all related researches.

3. Data Processing
In our work, a new detection method is proposed that consists of feature extraction, weighting,
data compression, and detectors based on machine learning and deep learning. In this section,
the implementation of data processing will be presented, and the details of the detection
method would be put in the next section.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 9, September 2021 3261

3.1 Weighted Directed Cycle Graph
Directed Acyclic Graph (DAG) is a continuous graph with a finite set of points S and a set of
directed edges E, and any edge e from vertex is to another vertex (,)j i js s s S∈ , and any
vertex cannot return itself and the directed edge sequence [14]. DAG can represent the set of
possibilities that satisfied Markov property, which clarifies that the probability of transitioning
from a state to another only depends on the current state.

DAG has been widely used in many fields. However, some graph nodes may access
themselves. In this case, DAG is not practical and needs to be represented by Directed Cyclic
Graph (DCG).

In the calling of software API, an API may call other APIs many times, or it may call
itself. Therefore, we use DCG diagram to describe the calling relationship of software API. In
the DCG graph of API, we define that the edges of DCG graph will be weighted according to
the calling relationship of API. In other words, the weight of the directed edge between Si and
Sj is the number of times API Si calls API Sj. In particular, the weight of the directed edge
between Si and Si is also the structure of Si calling Si. As shown in Fig. 1, it describes the
calling relationship between vertex (API) and vertex.

S1 S4

S5

S3

S2

1

2

2

3
1

5

6

1

1

Fig. 1. Sturcture of DCG

We use adjacency matrix to describe a DCG graph called by API. Both rows and columns

are used to represent API. The value of i row and j column in the matrix represents the number
of times API Si calls API Sj, which represents the weight of DCG edges. The adjacency matrix
of DCG graph shown in Fig. 1 can be represented by Table 1, the weight of the edge in the
graph corresponds to the value of the matrix one by one.

Table 1. Adjacent matrix of the DCG in Fig. 1

 1S 2S 3S 4S 5S

1S 1 2 3 2 0

2S 0 0 5 0 0

3S 1 0 0 6 0

4S 0 0 0 0 2

5S 0 1 0 0 0

3262 Li et al.: Malware Detection with Directed Cyclic Graph and Weight Merging

3.2 Weighting from Markov Chain
Markov chain is a set of discrete random variables with Markov property[15]. Markov chain is
widely used in the classification and processing of sequential data, especially in the dynamic
detection of malicious code [16], [17].

In our method, in order to identify and quantify the sensitivity of API calls, we calculate
the weight of each call from one API to another based on Markov chain. Therefore, we assume
that the API call is independent of the previous process and do not consider the sequence of
API calls when calculating the weight. Therefore, when we consider the API calling process of
the sample, we only consider the number of each API calling each other, not its sequence. In
this way, the API calls related to time series can be represented by DCG diagram, and then the
weight can be calculated. The specific calculation process is shown in Algorithm 1.

Algorithm 1 weight calculation algorithm based on Markov chain
Input: malicious sample data set s = S1, S2, ···, Sn;
Output: The weight matrix w of malicious samples;
1: W ← 0
2: for each i ∈ {1, 2, … , n} do

3: Obtain a sample Si
4: Obtain weight matrix wi of sample Si
5: Obtain the API call sequence matrix Mi of sample Si = [E1, E2, ···,Em]T, where E1=
(e11, e12, • • • , e1m), ···, Em = (em1, em2, ···, emm)
6: for j ∈ {1, 2, ···, m} do

7: ∑
=

←
m

k
jkeS

1

8: for k ∈ {1, 2, ···, m} do

9:
S

e
w jk

jk ←

10: end for
11: end for
12: W ← W + wi
13: end for
14: for j ∈ {1, 2, … ,m} do

15: ∑
=

←
m

k
jkeS

1

16: for k ∈ {1, 2, … ,m} do

17:
S

w
W jk

jk ←

18: end for
19: end for
20: return W

When we calculate the weight, firstly, we need a Data Set which only contains malicious
code and is rich enough to cover the general characteristics of malicious code. Then, all APIs
in the Data Set are numbered (S1 to SM), and the corresponding DCG graph and adjacency
matrix of samples are generated based on Markov chain. We define the DCG graph based on

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 9, September 2021 3263

Markov chain as "weighted graph", denote it as matrix M, and generate its weight graph. In the
weight graph, the weight Wij of edge eij is calculated as follows:

,
,

,
1

()

()

i j
i j n

i k
k

N e
w

N e
=

=

∑
 (1)

where ,()i jN e means the number of calls that from API is to js , and ,
1

()
n

i k
k

N e
=
∑ refers to the

sum of all calls that invoked from is . The nature of the weight in Markov Chain is the
probability of the event's occurrence. Hence the sum of the weight invoked from an API is
must be 1:

,
1

1
n

i k
k

w
=

=∑ (2)

In the weighting stage, the weight of each sample is calculated first. After the weight of all
samples is calculated, the weight matrix of each sample is accumulated, and the final weight
graph is normalized by using the above method again to obtain the adjacency matrix of the
final weight graph. The adjacency matrix can express the importance of API call and the
characteristics of samples.

3.3 Feature extraction of detection samples
After getting the weight graph of malicious code Data Set, we need to use it to extract the
feature graph of detection samples. The specific process is as follows:

Firstly, the DCG graph of the detection sample is generated.
Secondly, the DCG graph and the weight graph are used for point multiplication to obtain

the feature graph of the detection sample.
The process of feature map extraction is shown in Fig. 2. From the above two steps, the

DCG graph of detection samples and the weight graph of malicious samples can be obtained
respectively. Both of them are represented by adjacency matrix. It is not difficult to find that
the dimensions of the two matrices are the same, which are m × m dimension matrices. In
feature extraction, we multiply the two matrices, that is, multiply the corresponding elements,
and get the feature graph of the detection sample, which is also m × m dimension matrix.
Similarly, the elements of the adjacency matrix of the feature graph are normalized, and the
processing formula is as follows:

ijijij nwW •= (3)
Where nij is the value of the i row j column in the adjacency matrix M of the sample to be
detected, that is, the number of times ei is called. wij is the value of ith row jth column in the
weight matrix W. In the figure, the calculation principle is represented by a simple example,
and the feature graph extracted from the figure is represented as an adjacency matrix, as shown
in Table 2.

3264 Li et al.: Malware Detection with Directed Cyclic Graph and Weight Merging

Fig. 2. Merge process of DCG and weighting graph

Table 2. Adjacent matrix of the Merged graph

 1S 2S 3S 4S 5S 5S

1S 0.125 0 0.875 0 0 0
2S 0 0 1 0 0 0
3S 0 0 0 0 0 0
4S 0 0 0 0 1 0
5S 0 0 0 0 0 0

3.3 Principal Components Analysis
To improve the performance of the evaluation and reduce time consumption, PCA technique is
adopted to centralize the information and reduce the dataset volume.

PCA is a prevalent statistic processing technique for data analysis and preprocessing,
which has been applied widely in data processing and mining [18], [19], [20]. The main
propose of PCA is to reduce the dimension of analyzed data while maintaining the most
information [21]. Generally, PCA can transform an m-dimension dependent variable into an
n-dimension independent one (m n<) under the premise of keeping most of the information,
and the transformed variables are called the principal components (PCS).

Considering a data set X with the number of data M and the dimension N , so that

1 2[, ,..., ,...,]T
i NX x x x x= and ,1 ,2 ,[, ,...,]i i i i Nx v v v= . The PCA process could be presented as

following steps:
• Before calculation, each variable , , 1, 2,...,i jv j N= of the vector ix was rescaled as

,
1

1 m

i i j
j

v
M

µ
=

= ∑ (4)

, ,i j i j ivθ µ= − (5)

each variable ,i jv would be replaced with ,i jθ , and the vector ix finish the rescalation.

• After the rescalation, the covariance matrix is further calculated and eigenvalue
decomposition is performed as:

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 9, September 2021 3265

T TR X X P P= ⋅ = ⋅Λ ⋅ (6)
where P is the matrix formed by the eigenvector, Λ is the eigenvalue matrix and is
arranged as follows by size:

(1 1) T TR N X X P P= − − ⋅ = ⋅Λ ⋅ (7)
where T T

MPP P P I= = .

0
[]

0

T
q q

q M q
T

M q M q

P
R P P

P
−

− −

  Λ
  =   
  Λ   

 (8)

where Λ is the eigenvalues matrix of R with decreasing order.

4. Detection Method
In this section, several detection methods based on machine learning and deep learning are
proposed.

4.1 Machine Learning Approaches
For the detectors that based on machine learning, Support Vector Machine (SVM), Decision
Tree (DT), Random Forests (RF), and Naive Bayes (NB) are adopted to evaluate our
approaches. All those models are supervised learning models, which need to be trained with
lots of labeled data to obtain a model for classification. Notably, the principals of each model
are very different, so that they will have distinct results in malware detection.

Support Vector Machine is a valid binary classifier that is applied widely in the task of
two-class identification [22]. The target of SVM is to get a hyperplane that could identify a
binary class with maximum margin from support vectors so that the hyperplane could work
well in classify new input data.

The principal of Decision Tree is to build a tree that consists of a non-leaf node for
representing attribute and leaf-node for labeling [23]. The method can learn the characteristics
from the training data by using higher information gain, and the attributes will be used for
classification.

Random Forest is a combination of several self-determining decision tree [24]. Each tree
in the method will process independently, and all results of the trees will be collected and
finally voted for the ultimate result. Because the outcome of Random Forest is based on
various trees, it usually performs better than a single Decision Tree.

Naive Bayes is a classification method based on Bayes theorem, which assumes that the
features of the data are independent among them. The model calculates the conditional
probability of each feature in the training phase, and the possibility will be adopted for
computing posterior probability and then classification.

4.2 Deep Learning Approaches
Besides the models of machine learning, some models based on CNN and RNN are also used to
detect malware. Each model is customized to fit the detection that effective for our method.

3266 Li et al.: Malware Detection with Directed Cyclic Graph and Weight Merging

Fig. 3. Sturcture of CNN

The structure of CNN is shown in Fig. 3. The input layer of the model is a matrix generated

from PCA. The output size of each layer is marked above it. C1 is convolution layer, which
contains 16 convolution cores with a size of 5 × 5 and a step size of 1; C3 is convolution layer,
which contains 32 convolution cores with a size of 5 × 5 and a step size of 1; S2 and S4 are
pooling layers with the same size of 2 × 2; the number of neurons in the full connection layer is
128 and 100; the final output layer is softmax, the output is a two-dimensional variable for
classification.

The architecture of RNN is shown in Fig. 4. RNN is a sequence-based model that output a
state th at each step t , and each state of current step will depend on both current input tx and
previous state 1th − [26], [27].

Cell Cell

ht ht+1

FC Layer

Relu

FC Layer

Relu

Xt ht+1

……

Fig. 4. Sturcture of RNN

In this model, we combine a full connection layer, a Relu unit and an RNN cell as a network
structure at one time. The full connection layer and Relu unit are used to extract sample
features, RNN is used to identify the attributes of data.

5. Experimental Classification Results and Analysis

5.1 Datasets and Environment
Dataset: In this work, we collected a dataset consists of 13624 samples, which have 6686
malware and 6938 benign samples. The detailed statistics were presented in Table 3. The
malicious samples came from VirusTotal and VirusShare, and the benign samples came from
system programs as well as the Internet. The benign dataset was split into five parts evenly to

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 9, September 2021 3267

fit the numbers of malware dataset for each year. In our experiments, 10-fold cross-validation
method is used to train and verify the model. The method is as follows: first, all samples are
randomly divided into 10 subsets, each time 9 subsets are selected as training samples, and
another subset is taken as test samples. In this way, the model can be trained ten times, and the
remaining validation sample can be used to evaluate the accuracy of the model after training.
Finally, average the ten test results as the final test results. For weighting models, an API log
dataset was adopted for training. The dataset for weighting included 62307 malware samples
that were obtained from VirusShare and selected randomly so that the generality of the
weighting model could be guaranteed.

Table 3. Datasets for Evaluation
Dataset Number

2016 Malware Dataset 1606
2017 Malware Dataset 1247
2018 Malware Dataset 1656
2019 Malware Dataset 888
2020 Malware Dataset 1289
Benign File Dataset 6938
Total 13624

Environments: The experiments were performed on a workstation with Ubuntu 18.04
system. To monitor and extract the call sequences of each sample, a Cuckoo sandbox was
deployed on the workstation as the running environment of the samples.

5.2 Experiment Steps
A. Weighting and Generating of Graph
In this phase, the extracted call sequences were numbered firstly. Then the sequences were
transformed into the DCG. The index of the DCG presented the corresponding API and the
value in each cell referred to the appearance number of the API invoked by the previous API.
After generating DCG, the graph mixed with the weighting graph, so that a weighted DCG
with a unique value for each edge was created.

In the weighting phase, firstly, the weighting graph was trained from the dataset. The initial
weighting graph had 1609 rows and columns after the training. Then the weighting graph was
used to generate merged graphs for detection.
B. Detection and Evaluation
After data processing, the final data was detected with the proposed models. To evaluate the
performance of each model, the index of accuracy, precision, recall, and F1-score were
adopted.

Accuracy is a standard metric that measures the exactitude of prediction. Precision refers
to the number of predicted positive samples that are really positive. Recall is the number of
positive examples in the sample that are predicted as positive. F1-Score is a comprehensive
measure index of the classification model. All of these indexes could be computed as the
following equations:

TP TNAccuracy
TP TN FP FN

+
=

+ + +
 (10)

3268 Li et al.: Malware Detection with Directed Cyclic Graph and Weight Merging

TPPrecision
TP FP

=
+

 (11)

TPRecall
TP FN

=
+

 (12)

21 Precision RecallF Score
Precision Recall
× ×

− =
+

 (13)

where TP is True Positive, which refers to the number of positive samples that are predicted
as positive. FN is False Negative, namely the number of positive samples that are predicted
as negative. FP is False Positive, which means the number of negative samples that are
predicted as positive. TN is True Negative, which is the number of negative samples that are
predicted as negative. In our work, malicious samples were labeled as positive, and benign
samples were labeled as negative.

Besides, the receiver operating characteristic (ROC) curve was also be implemented as a
measure to evaluate the models. The curve used False Positive Rate (FPR) as the X-axis and
True Positive Rate (TPR) as the Y-axis. Both values could be computed as (14) and (15).
Moreover, the Area Under Curve (AUC) was calculated to estimate the overall accuracy of the
models [28].

TPTPR
TP FN

=
+

 (14)

FPFPR
FP TN

=
+

 (15)

5.3 Detection Result and Analysis
Table 4 shows the evaluation results of the model based on the datasets of different years. The
results show that both machine learning model and deep learning model have achieved good
prediction results, and the performance of each model is relatively close, which does not show
that the model is the best. It shows that our feature extraction method is effective, and some
main machine learning models based on this feature extraction method have good detection
results, which shows that our proposed feature extraction method is universal.

It can be seen that with the increase of years, the prediction accuracy of the model shows a
downward trend. We think that this is because with the increase of years, the design level of
malicious code is getting higher and higher, and it has more powerful anti detection ability,
which is a big challenge to our model. In the future research, we will try to improve the self
optimization ability of the model to solve the problem.

Fig. 5 showed the ROC curves of the evaluation, where DT, RF, and NB are the
abbreviation of Decision Tree, Random Forest, and Naive Bayes. The AUC of each model was
presented in the legend of the figure. It could be seen that most models had a good effect in
evaluation, except Naive Bayes that had a poor performance and RNN that performed very
unstably in the detection.

In summary, the result indicated that our approach had a good effect on the general
malware detection with the most models based on machine or deep learning, which could
prove the effectiveness of our approach.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 9, September 2021 3269

Fig. 5. ROC Curve of evaluation

3270 Li et al.: Malware Detection with Directed Cyclic Graph and Weight Merging

Table 4. Evaluation of the models with different datasets
DataSet Model Accuracy Precision Recall F1-Score

2016 Year Dataset

SVM 0.9556 0.935 0.9573 0.9656
NB 0.8211 0.8606 0.8087 0.8112
DT 0.9386 0.9406 0.9652 0.9328
RF 0.9357 0.9183 0.9547 0.9351

DNN 0.9618 0.9536 0.9627 0.9648
CNN 0.9673 0.9518 0.9562 0.9529
RNN 0.927 0.942 0.9339 0.928

2017 Year Dataset

SVM 0.9605 0.9543 0.9573 0.9652
NB 0.8327 0.843 0.7834 0.8678
DT 0.9305 0.9618 0.9267 0.9591
RF 0.9502 0.9496 0.9389 0.9478

DNN 0.9506 0.9544 0.9473 0.9625
CNN 0.9627 0.9563 0.9682 0.9457
RNN 0.9605 0.9468 0.9722 0.9544

2018 Year Dataset

SVM 0.9256 0.9345 0.9487 0.9225
NB 0.8688 0.8693 0.8828 0.8685
DT 0.944 0.9256 0.9522 0.9337
RF 0.9419 0.9617 0.922 0.9518

DNN 0.9353 0.9270 0.9445 0.9656
CNN 0.9643 0.9638 0.9688 0.9632
RNN 0.957 0.934 0.9521 0.938

2019 Year Dataset

SVM 0.9458 0.9362 0.9276 0.9463
NB 0.8378 0.8528 0.8519 0.8261
DT 0.9356 0.9251 0.9159 0.9454
RF 0.9507 0.9487 0.9293 0.9186

DNN 0.9434 0.9267 0.9141 0.9253
CNN 0.9307 0.9581 0.9286 0.9483
RNN 0.948 0.9285 0.9133 0.9259

2020 Year Dataset

SVM 0.9008 0.8996 0.9037 0.9003
NB 0.7927 0.819 0.7847 0.8038
DT 0.9245 0.9164 0.9319 0.9237
RF 0.9226 0.9176 0.9447 0.9261

DNN 0.9162 0.9095 0.9228 0.9409
CNN 0.9361 0.9344 0.9259 0.9101
RNN 0.9285 0.9379 0.9324 0.9351

6. Discussion and Conclusion
In this work, we propose a new malware detection approach. The approach mainly consists of
the generation of Directed Cyclic Graph and the weighting based on the Markov Chain. To
improve the performance and accuracy of the method, Primal Component Analysis is applied
to reduce the volume of data as well as retain the primary information related to the detection.
Finally, some models based on machine learning and deep learning are adopted to evaluate the
effect of our approach. The result shows that the method had an excellent performance in most
of the detection, with the highest accuracy of 96.73%. The AUC of most models could keep
above 90% except NB, which could confirm the robustness and universality of the approach.

Inevitably, our method also has some problems and limitations, which need to be further
studied. First of all, we can see that our method needs PCA method to reduce the dimension, so
as to meet the requirements of fixed input of the model, and it is not adaptive when facing the
malicious code with large differences. In the future work, our research will focus on the
adaptive learning of features and models, so that the features of malware detection can adapt to

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 9, September 2021 3271

the development of malware and related technologies, without human interference. In addition,
in view of the increasing trend of adversarial attacks based on machine learning model, we will
further study the related defense measures.

Acknowledgment
This work was partially supported by National Key R&D Program of China under Grant No.
2020YFC0832500, Ministry of Education - China Mobile Research Foundation under Grant
No. MCM20170206, The Fundamental Research Funds for the Central Universities under
Grant No. lzujbky-2020-sp02, lzujbky-2019-kb51 and lzujbky-2018-k12, National Natural
Science Foundation of China under Grant No. 61402210, State Grid Corporation of China
Science and Technology Project under Grant No. SGGSKY00WYJS2000062, Science,
National key R&D Program of China under Grant NO. 2018YFB0203901, the Key Research
and Development Program of Shaanxi Province(No.2018ZDXM-GY-036), Shaanxi Key
Laboratory of Intelligent Processing for Big Energy Data(No.IPBED7) , Technology Plan of
Qinghai Province under Grant No.2020-GX-164, Google Research Awards and Google
Faculty Award. We also gratefully acknowledge the support of NVIDIA Corporation with the
donation of the Jetson TX1 used for this research.

References
[1] A.Saeed, Imtithal, Ali Selamat, and Ali M. A. Abuagoub, “A Survey on Malware and Malware

Detection Systems,” International Journal of Computer Applications, 67(16), 25–31, 2013.
Article (CrossRef Link).

[2] Bazrafshan, Zahra, Hashem Hashemi, Seyed Mehdi Hazrati Fard, and Ali Hamzeh, “A Survey on
Heuristic Malware Detection Techniques,” in Proc. of The 5th Conference on Information and
Knowledge Technology, shiraz, Iran, 113–120, 2013. Article (CrossRef Link)

[3] Ye, Yanfang, Tao Li, Donald Adjeroh, and S. Sitharama Iyengar. 2017, “A Survey on Malware
Detection Using Data Mining Techniques,” ACM Computing Surveys, 50(3), 1–40, 2017.
Article (CrossRef Link).

[4] Tang, Mingdong, and Quan Qian, “Dynamic API Call Sequence Visualisation for Malware
Classification,” IET Information Security, 13(4), 367–377, 2019. Article (CrossRef Link).

[5] Xiaofeng, Lu, Jiang Fangshuo, Zhou Xiao, Yi Shengwei, Sha Jing, and Pietro Lio, “ASSCA: API
Sequence and Statistics Features Combined Architecture for Malware Detection,” Computer
Networks, 157, 99–111, 2019. Article (CrossRef Link)

[6] Ma, Xin, Shize Guo, Wei Bai, Jun Chen, Shiming Xia, and Zhisong Pan, “An API
Semantics-Aware Malware Detection Method Based on Deep Learning,” Security and
Communication Networks, 2019. Article (CrossRef Link)

[7] Alqurashi, Saja, Omar Batarfi, Saudi Arabi, “A comparison between API call sequences and
opcode sequences as reflectors of malware behavior,” in Proc. of 2017 12th International
Conference for Internet Technology and Secured Transactions (ICITST), IEEE, 2017.
Article (CrossRef Link)

[8] Mira, Fahad, “A Review Paper of Malware Detection Using API Call Sequences,” in Proc. of 2019
2nd International Conference on Computer Applications & Information Security (ICCAIS),
Riyadh, Saudi Arabia, 1–6, 2019. Article (CrossRef Link).

[9] Naval, Smita, Vijay Laxmi, Muttukrishnan Rajarajan, Manoj Singh Gaur, and Mauro Conti,
“Employing Program Semantics for Malware Detection,” IEEE Transactions on Information
Forensics and Security, 10(12), 2591–2604, 2015. Article (CrossRef Link).

https://doi.org/10.5120/11480-7108
https://doi.org/10.1109/IKT.2013.6620049
https://doi.org/10.1145/3073559
https://doi.org/10.1049/iet-ifs.2018.5268
https://doi.org/10.1016/j.comnet.2019.04.007
https://doi.org/10.1155/2019/1315047
https://doi.org/10.23919/ICITST.2017.8356357
https://doi.org/10.1109/CAIS.2019.8769564
https://doi.org/10.1109/TIFS.2015.2469253

3272 Li et al.: Malware Detection with Directed Cyclic Graph and Weight Merging

[10] Onwuzurike, Lucky, Enrico Mariconti, Panagiotis Andriotis, Emiliano De Cristofaro, Gordon
Ross, and Gianluca Stringhini, “MaMaDroid: Detecting Android Malware by Building Markov
Chains of Behavioral Models (Extended Version),” ACM Transactions on Privacy and Security,
22(2), 1–34, 2019. Article (CrossRef Link).

[11] Ficco, Massimo, “Detecting IoT Malware by Markov Chain Behavioral Models,” in Proc. of 2019
IEEE International Conference on Cloud Engineering (IC2E), Prague, Czech Republic, 229–234,
2019. Article (CrossRef Link).

[12] Ganesh, Meenu, Priyanka Pednekar, Pooja Prabhuswamy, Divyashri Sreedharan Nair, Younghee
Park, and Hyeran Jeon, “CNN-Based Android Malware Detection,” in Proc. of 2017 International
Conference on Software Security and Assurance (ICSSA), Altoona, PA, 60–65, 2017.
Article (CrossRef Link).

[13] Chen, Xiao, Chaoran Li, Derui Wang, Sheng Wen, Jun Zhang, Surya Nepal, Yang Xiang, and Kui
Ren, “Android HIV: A Study of Repackaging Malware for Evading Machine-Learning Detection,”
IEEE Transactions on Information Forensics and Security, 15, 987–1001, 2019.
Article (CrossRef Link).

[14] Spirtes, Peter L, “Directed Cyclic Graphical Representations of Feedback Models,”
arXiv:1302.4982 [Cs], February 2013. Article (CrossRef Link).

[15] Xiao, Xi, Zhenlong Wang, Qing Li, Shutao Xia, and Yong Jiang, “Back-Propagation Neural
Network on Markov Chains from System Call Sequences: A New Approach for Detecting Android
Malware with System Call Sequences,” IET Information Security, 11(1), 8–15, 2017.
Article (CrossRef Link).

[16] Zang, Dong, Jinhai Liu, and Huaizhen Wang, “Markov Chain-Based Feature Extraction for
Anomaly Detection in Time Series and Its Industrial Application,” in Proc. of 2018 Chinese
Control and Decision Conference (CCDC), Shenyang, 1059–1063, 2018. Article (CrossRef Link).

[17] Yong, B., Liu, X., Yu, Q., Huang, L., & Zhou, Q, “Malicious Web traffic detection for Internet of
Things environments,” Computers & Electrical Engineering, 77, 260-272, 2019.
Article (CrossRef Link)

[18] Chereau, Jean P., Bruno Scalzo Dees, and Danilo P. Mandic, “Robust Principal Component
Analysis Based on Maximum Correntropy Power Iterations,” arXiv:1910.11374 [Cs, Eess, Math,
Stat], October 2019. Article (CrossRef Link).

[19] Hadri, Amal, Khalid Chougdali, and Rajae Touahni, “Intrusion Detection System Using PCA and
Fuzzy PCA Techniques,” in Proc. of 2016 International Conference on Advanced Communication
Systems and Information Security (ACOSIS), Marrakesh, Morocco, 1–7, 2016.
Article (CrossRef Link).

[20] Liu, Liang, Jianchang Liu, Xia Yu, Honghai Wang, and Zhaoqiang Chen, “A multivariate
monitoring method based on PCA and Dual Control Chart,” in Proc. of 2019 Chinese Control And
Decision Conference (CCDC), IEEE, 2019. Article (CrossRef Link).

[21] Shlens, Jonathon, “A Tutorial on Principal Component Analysis,” arXiv:1404.1100 [Cs, Stat],
April 2014. Article (CrossRef Link).

[22] Alam, Saruar, Moonsoo Kang, Jae-Young Pyun, and Goo-Rak Kwon, “Performance of
Classification Based on PCA, Linear SVM, and Multi-Kernel SVM,” in Proc. of 2016 Eighth
International Conference on Ubiquitous and Future Networks (ICUFN), Vienna, Austria, 987–989,
2016. Article (CrossRef Link)

[23] Patil, Siddalingeshwar, and Umakant Kulkarni, “Accuracy Prediction for Distributed Decision
Tree Using Machine Learning Approach,” in Proc. of 2019 3rd International Conference on
Trends in Electronics and Informatics (ICOEI), Tirunelveli, India, 1365–1371, 2019.
Article (CrossRef Link).

[24] Xiang, Yiyao, Lei Li, and Wanting Zhou, “Random Forest Classifier for Hardware Trojan
Detection,” in Proc. of 2019 12th International Symposium on Computational Intelligence and
Design (ISCID), Hangzhou, China, 134–137, 2019. Article (CrossRef Link).

[25] Zhou, Q., Yong, B., Lv, Q., Shen, J., & Wang, X., “Deep Autoencoder for Mass Spectrometry
Feature Learning and Cancer Detection,” IEEE Access, 8, 45156-45166, 2020.
Article (CrossRef Link)

https://doi.org/10.1145/3313391
https://doi.org/10.1109/IC2E.2019.00037
https://doi.org/10.1109/ICSSA.2017.18
https://doi.org/10.1109/TIFS.2019.2932228
http://arxiv.org/abs/1302.4982
https://doi.org/10.1049/iet-ifs.2015.0211
https://doi.org/10.1109/CCDC.2018.8407286
https://doi.org/10.1016/j.compeleceng.2019.06.008
http://arxiv.org/abs/1910.11374
https://doi.org/10.1109/ACOSIS.2016.7843930
https://doi.org/10.1109/CCDC.2019.8832679
http://arxiv.org/abs/1404.1100
https://doi.org/10.1109/ICUFN.2016.7536945
https://doi.org/10.1109/ICOEI.2019.8862580
https://doi.org/10.1109/ISCID.2019.00037
https://doi.org/10.1109/ACCESS.2020.2977680

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 9, September 2021 3273

[26] Habi, Hai Victor, and Hagit Messer, “RNN Models for Rain Detection,” in Proc. of 2019 IEEE
International Workshop on Signal Processing Systems (SiPS), Nanjing, China, 184–88, 2019.
Article (CrossRef Link).

[27] Yong B, Shen J, Liu X, et al., “An intelligent blockchain-based system for safe vaccine supply and
supervision,” International Journal of Information Management, 52(2020), 102024, 2020.
Article (CrossRef Link).

[28] Bradley, Andrew P, “The Use of the Area Under the ROC Curve in the Evaluation of Machine
Learning Algorithms,” Pattern Recognition, 30 (7), 1145–1159, 1997. Article (CrossRef Link).

SHANXI LI (Member, IEEE) received the M.S. and PhD degrees in computer sciences
from Lanzhou University, in 2009 and 2021, respectively. His research interests include
computer networks, computer security, artificial intelligence and machine learning.

Qingguo Zhou received the BS and MS degrees in Physics from Lanzhou University in
1996 and 2001, respectively, and received PhD in Theoretical Physics from Lanzhou
University in 2005. Now he is a professor of Lanzhou University and working in the School
of Information Science and Engineering. He is also a Fellow of IET. He was a recipient of
IBM Real-Time Innovation Award in 2007, a recipient of Google FacultyAward in 2011, and
a recipient of Google Faculty Research Award in 2012. His research interests include
safety-critical systems, embedded systems, and real-time systems.

Wei Wei (SM’17) received the M.S. and Ph.D. degrees from Xi’an Jiaotong University,
Xi’an, China, in 2005 and 2011, respectively. His current research interests include the area
of wireless networks, wireless sensor networks application, image processing, mobile
computing, distributed computing, and pervasive computing, Internet of Things, and sensor
data clouds. Dr. Wei is a Senior Member of the China Computer Federation.

https://doi.org/10.1109/SiPS47522.2019.9020603
https://doi.org/10.1016/j.ijinfomgt.2019.10.009
https://doi.org/10.1016/S0031-3203(96)00142-2

	Shanxi Li1, Qingguo Zhou1* and Wei Wei2*
	Xi'an 710048 - China
	[e-mail: weiwei@xaut.edu.cn]
	*Corresponding author: Qingguo Zhou and Wei Wei
	Abstract
	Fig. 1. Sturcture of DCG
	Table 1. Adjacent matrix of the DCG in Fig. 1
	Fig. 2. Merge process of DCG and weighting graph
	Table 2. Adjacent matrix of the Merged graph
	Fig. 4. Sturcture of RNN
	A. Weighting and Generating of Graph
	B. Detection and Evaluation
	5.3 Detection Result and Analysis
	Fig. 5. ROC Curve of evaluation
	Table 4. Evaluation of the models with different datasets

